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Abstract

In modern wireless communication standards, a Multiple-Input Multiple Output (MIMO) detection has
a major role in detection and decoding aspects. The general problem raised in the communication process is to
replicate the message at one point approximately a message selected at another point. Conventional standards
like Markov chain Monte Carlo (MCMC) algorithm results in better performance expect  bit  error  rate  and
complexity.  Hence,  recent  researchers  focused  on  applying  the  new  optimal  concept  applying  on  various
detection  units  for  performance  improvement  and  implementation.  Similarly,  the  lattice  reduction
methodologies  are  limited  with  its  performance.  To  improve  such  things,  we  proposed  an  Optimal
Approximation message passing technique in Large-Scale MIMO Detection. This method operated with two
constraints namely, noise variance and modulation noise variance. It is concentrated on minimizing the Symbol
Error Rate (SER) by testing the proposed detection system with the traditional Quadrature Phase Shift Keying
(QPSK) Modulation and Quadrature Amplitude Modulation (QAM). The proposed method is fully designed and
tested with the MATLAB simulation tool. It is tested with m*n process with a transmitter (m) and receiver (n)
antenna  with  various  iterations.  The  performance  evaluation  were  carried  out  with  Signal  to  Noise  Ratio
(SNR)and SER attributes. From analysis, we concluded that the proposed method has the best optimal value
when  it  is  implemented  with  the  Quadrature  Phase  Shift  Keying  (QPSK).  Further,  we  observed  that  the
complexity of detection unit is minimized.  

Keywords:  Multiple-Input  Multiple-Output  (MIMO),  Markov  chain  Monte  Carlo,  Symbol  Error  Rate,
Quadrature Phase Shift Keying. 

I. Introduction

Due to  the  rapid  development  of  wireless
communication,  multiple-input  multiple  output
(MIMO)  systems  is  essential  for  higher  spectral
efficiency  is  needed  to  meet  the  capacity
requirements  of  modern  wireless  networks.  The
wireless  communication  systems  with  multiple
antennas at both the transmitter and receiver are able
to transmit several data streams and for efficient data
rate.  Modern  MIMO  are  more  moderately  sized
spatial-multiplexing with potential  benefits  of  high
throughput  in  scattering  environments,  small  scale
system  capabilities  appropriate  for  home  use  and
small cells.

MIMO  is  an antenna  technology  for
wireless communications in which multiple antennas
are used at both at transmitter) and at the receiver. In
conventional wireless communication SISO is used
but it give rise to multipath propagation and increase

in data speed.  To overcome this limitations MIMO
is widely used in digital communications. MIMO is
an  essential  element  of  wireless  communication
standards,  including IEEE  802.11 (Wi-Fi),  WiMAx
(4G),  metropolitan  area  networks  (MANs)  and
mobile  communications.  The  MIMO  detector
generates soft information of the transmitted coded
bits  plays  a  key  role  to  achieve  near-capacity
performance for the MIMO system.

Catreux  et  al.,  (2001)  suggested  that  it  is
possible to increase the capacity by means of folding
the  antenna  to  de-correlation  of  the  complex  path
gains.  The  array  elements  are  activated  with  the
respective  array  elements.  In  some  cases,  the
adaptive modulation has the transmission parameters
such  as  power,  constellation  size  are  adapted  to
exploit  prevailing  channel  conditions,  also  yields
significant  increases  in  capacity.Some  other
traditional  methods  are  mentioned  without  its
external interference. 
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a) Background and Motivation

The MIMO technique is rarely utilized with
the  adaptive  modulation  rate  to  avoid  some
interference  and  improve  the  performance.  It  is
framed  with  the  metrics  known as  constraints  and
system design units to manage the process of channel
conditions. The motivation behind this research work
must follows the basic concepts. The large real time
systems must increases the spectral  efficiencies  for
wireless Systems, optimize data speed, it must have
increased  reliability,  minimize  errors,  provide
maximum power efficiency  through the exploitation
of  large  spatial  dimensions.  The  designing  unit
support  efficient  spatial  multiplexing  and  diversity
gains. 

b) Research objectives

In this research, we have framed a MIMO
system  with  a  Quadrature  Phase  Shift  Keying
(QPSK)  Modulation  and  Quadrature  Amplitude
Modulation technique with the antenna iterations as
2 and 4. It  is based on the antenna properties with
respect to channel. It helps to maintain the properties
of  the  channel  matrix  of  a  proposed  system.  The
main objective is to develop a low complexity large
scale MIMO. MIMO detection is analysed by testing
it  with  the  Markov  chain  Monte  Carlo  (MCMC)
algorithm based block-wise sampling. Further,  it  is
proposed  with  an  efficient  balanced  trade-off
between  computational  complexity  and  the
performance in terms of Symbol Error Rate.

c) Markov Chain Monte Carlo (MCMC)

Markov  Chains  are  Markov  processes
whose time-dependent random variables (the state of
the Markov chain) can assume values in a discrete
set  (the  state  space),  either  finite  or  countable
infinite.  The  Markov  property  is  essentially  a
conditional independence of the future evolution on
the  past  (the  whole  history  of  the  process  being
summarized in the current state). Basically, the chain
can be seen as modeling the position of an object in a
discrete set of possible locations over time, the next
location being chosen at random from a distribution
that  depends  only  on  the  current  oneRandom
sampling  algorithm.  The  following  advantages
areachieved  in  case  of  modifying  the  detector
module. 

 Estimates  model  parameters  and  their
uncertainty

 Only  samples  regions  of  high  probability
rather than uniform sampling

 Faster and more efficient. 

 MCMC technique for signal detection on the
uplink in large scale multiuser multiple input
multiple output (MIMO) systems with tens to
hundreds of antennas at the base station (BS)
and similar number of uplink users

 Markov  Chain  Monte  Carlo  (MCMC)
detectors  is  selected  which  provide  the
optimal solution.

 MCMC  detector  can  be  adapted  to  take
channel  estimation  errors  into  account  with
only  a  moderate  increase  in  computational
complexity. 

 Gibbs sampling  is one of the MCMC method,
which is used for sampling from distributions
of multiple dimensions

d) Key problems in MIMO detection 

MIMO-  Bit-Interleaved  Coded  Modulation
(BICM)  system  in  which  coded  information
sequence  can  be  transmitted  through  multiple
antennas. At the receiver, an iterative detection and
decoding (IDD) receiver with maximum a posteriori
probability  (MAP)  to  provide  a  near  optimal
performance.Lattice Reduction (LR) are employed in
MIMO-IDD  systems  using  Markov  chain  Monte
Carlo MCMC to provide near-optimal performances
with a relatively low complexity.MCMC algorithm
with  Gibbs  sampling  is  employed  for  efficient
convergence  rate  in  Markov  chain.For  the  MIMO
detection  in  IDD receivers,  MAP approach  can  be
employed  to provide  the  optimal  performance,  but
the complexity grows exponentially with the number
of transmit antennas.If  the SNR increases,  then the
transition  probability  from  a  state  to  another
decreases  exponentially which will  result  in  a  low
convergence  rate  of  the  Markov  chain.  Then  the
Gibbs sampler gets stuck at a local minimum it may
require a long time to move to another state.

The  rest  of  this  paper  is  organized  as
follows.  Section  II  presents  the  detail  survey  on
MIMO methods with  various  modulation  schemes.
Section III presents the MIMO detection models with
the QAM and QPSK modulation schemes.  Section
IV presents the experimental comparison of previous
and present MIMO modules with the Symbol Error
Rate (SER). The complexity analysis is determined
with the final conclusion at section V. 



II. Literature survey

In  this  section,  the  background  and  the
preliminaries  of  the  current  work  are  discussed.
Starting with the description of conventional MIMO,
the  section  moves  on  discussing  the  large-MIMO
systems in depth, which is the focus of the current
work. The fundamentals along with the propagation
aspects  of  large-MIMO  systems  are  elaborated.
Subsequently,  the  system  model  for  both
independent and identically distributed channels and
spatially  correlated  channels  are  presented.  The
conventional  methods  optimal  and  suboptimal  are
surveyed and the problems encountered with respect
to the large-MIMO systems are analysed. Further the
state-of-the-art  techniques  of  large-MIMO  systems
are reviewed. 

Hedstrom  et  al.,(2017)  proposed  MCMC-
MIMO  detector  to  resolve  high  SNR  stalling
problem. The evaluation of MCMC detector achieves
a  near  maximum-a-posteriori  (MAP)  performance
with  highly-correlated  channels  at  the  maximum
MIMO  sizes  and  modulation  rates.  Its  major
limitations  are  slow  convergence  time  leads  to
unpredictable  fixed-length  implementations
problematic.  Bai  et  al.,  (2016)  presented  an
underdetermined  MIMO  model  with  the  MCMC
technique.  In  addition,  the  block  wise  sampling  is
also utilized to enhance the overall performance of
the system. In some cases, the iterative detection and
decoding  methods  are  added  with  the  MIMO
standards. 

Datta et al.,  (2013) proposed MIMO Detection
Using Randomized MCMC and Randomized Search
Algorithms.  Randomized  MCMC  is  proposed  to
alleviates the stalling problem and random selection
algorithm  is  to  select  the  candidate  vectors  to  be
tested  in  a  local  neighbourhood  search  to  achieve
near-optimal  performance  for  large  number  of
antennas  with  4-QAM.The  major  drawbacks  are
identified as  Markov chain that can occur with very
low  probability  and  less  attractive  for  large  scale
MIMO.  Senst  and  Ascheid  (2010)  developed  a
Markov Chain Monte Carlo MIMO Detection with
Imperfect  Channel  State  Information  for  imperfect
channel knowledge systems. This system is adapted
to performance gain over mismatched detection and
to  solve  the  channel  estimation errors  with only a
moderate increase in computational complexity. The
limitations  noticed  here  is  computation  of  the

transition  probabilities  and  complexity  reduction
when compared to other methods. 

Liu et al., (2015) developed a  near-optimal
fast multiple-input multiple-output (MIMO) detector
by hybrid  approach  as  QRD-MCMC to reduce  the
detection  delay  and  error  probability  performance.
The  performance  results  are  evaluated  in  terms  of
average  processing  delay  and  the  Bit  Error  Rate
(BER)  in  which  proposed  method  shows  obtain
efficient  results.The  major  limitations  of  QRD-
MCMC has  high  delay constraints  that  may cause
performance degradation in terms of throughput  or
data  rate.Chen  et  al.,  (2014)proposed  a  Stochastic
MIMO  Detector  based  MCMC  algorithm  for
arithmetic operations are employed by simple logic
structure.   sliding  window  generator  (SWG)  are
utilized  increase  the  transition  probability  of  the
MCMC  detector  and  a  log-likelihood  ratio  based
updating  method  (LUM),  to  reduces  the  hardware
cost. The performance results achieves a throughput
of  1.5 Gbps with only a 0.2 dB performance loss.
The major limitations are identified with the SWG
has more cost and power consumption is also high. It
faces a polynomial complexity for multidimensional
systems.

Wu  et  al.,  (2014)  performed  some  ASIC
implementations related with the MIMO techniques.
It achieves in first and second ASIC as the maximum
throughput of 73 Mbps and 170Mbps with the same
SNR ratio  as  20db. It  is  designed  mainly for  high
throughput  and  low  complexity.  Srinidhi  et  al.,
(2011)  carried  the  MIMO  detection  with  two  fold
units.  Initially,  the  layered  low-complexity  local
neighbourhood search based algorithm is presented
then  a  Maximum-Likelihood  (ML)  bit  error
performance  is  calculated.  The  major  merits
identified in the system is because of low complexity
of the search algorithm. The bit error performance of
the detection topologies are carried out with the local
neighbourhood  search.  Goldberger  and  Leshem
(2011) deployed a high order QAM constellations in
MIMO  systems.  The  Belief  Propagation  (BP)
algorithm  is  considered  as  a  traditional  algorithm
with poor results. Hence, optimal tree is considered
as  the  unconstrained  linear  system.  Hence,  the
performance  and  complexity  are  the  two  different
parameters  are  to  be  considered  in  future
implementations. 

Gestner  et  al.,  (2011)  considered  a  recent
objective  as  symbol  detection  and  identifying  the



complex  interaction  between  the  algorithm  and
hardware  unit.  It  assumes  the  complex  Lenstra-
Lenstra-Lov´asz  (CLLL)  LR algorithm in terms of
hardware  module.  It  also  merges  the  LR-aided
MIMO symbol detection with the real-time wireless
systems.Yang and Hanzo (2015) reviewed the fifty
years  of  MIMO  Detection.  It  identifies  some
problem  and  indicated  some  suggestions  in
tabulation. The medium and small MIMO units are
replaced with the traditional concepts. 

Yin  et  al.,  (2015)  developed  a  VLSI
architecture for the Conjugate Gradient (CG) based
soft-output data-detection algorithm proposed by Yin
et al., (2014). In particular, an architecture consisting
of  a  reconfigurable  array  of  Processing  Elements
(PEs) is to compute the CGLS algorithm, as well as
the  necessary  post-equalization  signal-to-
interference-and-noise-ratio (SINR) information that
is crucial for soft-output detection.

In the case of multiuser scenario, it is most
likely that the channel tends to be correlated due to
one or more of the reasons as reported in Payami and
Tufvesson (2012). This results in the channel vectors
to  become  correlated.  This  further  worsens  the
situation  when  the  correlation  makes  the  channel
matrix  poor  conditioned  and  in  certain  cases  rank
deficient.  The  impact  of  spatial  correlation  is  of
interest mainly due to the reason that, it complicates
the  detector  algorithm,  and  degrades  the  bit  error
performance too. Spatial correlation leads to loss of
orthogonality  in  the  channels  and  sometimes  even
makes the channel rank deficient. On account of this,
the  order  of  detection  diversity  reduces  leading  to
degraded  BER performance.  However,  most of the
works on detection available in the literature has to
be noticed. 

The  lattice-reduction  (LR)  aided  MIMO
detection  algorithms  is  build  upon  the  idea  of
converting  an  ill-conditioned  problem  into  an
equivalent  well-conditioned  problem.  This  is  done
via a linear transformation T, which is a unimodular
matrix.  Once  the  problem is  converted  to  a  well-
conditioned  one,  the  conventionally  available  sub-
optimal  detectors  can  be  employed.  Hence,  lattice
reduction  can  be  seen  as  a  pre-processing  method
that  is  applied  on  the  channel  matrix  before
proceeding  with  the  detection  methods.  Lattice
reduction  aided  detection  (LRAD)  works  with
reduced  near  orthogonal  basis  with  reduced
orthogonality  defect  and can achieve  full  detection

diversity in MIMO detection as well Windpassinger
et al. (2006). The performance is found to improve in
conjunction  with  the  successive  interference
cancelation (SIC), and list based detection Choi and
Nguyen (2009).

Senning  et  al.,  (2014)  concentrated  on  a
VLSI implementation of a complete MIMO channel
equalization ASIC based  on lattice  reduction-aided
linear  detection  is  presented.  The  architecture
performs  preprocessing  steps  at  channel  rate  and
low-complexity linear data detection at symbol rate.
Preprocessing  is  based  on  Seysen’s  algorithm  for
lattice reduction. It  discussed about the algorithmic
improvements of the lattice reduction preprocessing
in  terms  of  area  and  throughput  of  the  VLSI
implementation with minor impact on the error-rate.
Due  to  the  low-complexity  implementation  of  the
lattice  reduction-aided  data  detection  stage,  our
architecture  is  able  to  achieve  very  low power  in
typical  packet-based  MIMO  wireless  data
transmission  scenarios.  The  final  90  nm  CMOS
ASIC achieves an energy efficiency for the detection
of 24 pJ/bit at a throughput of 720 Mbps with near-
optimal  error-rate  performance.However,  enormous
research  has  gone  into  this  topic  and  plethora  of
methods  are  available  in  the  literature.  A  good
survey of lattice reduction techniques is available in 
Wubben et al. (2011) which provides a good insight
on the lattice reduction aided detection.

Tang and Bian (2018) proposed a new low
complexity lattice reduction algorithm, namely,  the
sorted  integer  Gauss  transformation  (SIGT).  The
SIGT algorithm can be interpreted as minimizing the
longest basis vector first and assure that there was no
integer projection between any two basis vectors. By
applying simulation over Rayleigh fading channels,
it  was  demonstrated  that  the  proposed  SIGT
algorithm can  have  almost  the  same bit  error  rate
(BER) performance as the LLL algorithm, while the
SIGT algorithm requires only about half iteration as
the  Lenstra–Lenstra–Lovász  lattice  basis  reduction
(LLL)  algorithm  and  the  running  time  of  each
iteration  for  both  algorithms  were  similar  to  each
other.  It  is  concluded that  the SIGT algorithm can
achieve almost the bit error rate (BER) performance,
while  the  SIGT  requires  fewer  iterations  than  the
LLL.

Mussi  et  al.,  (2017)  analysed  the
performance  of  efficient  multiple-input-multiple-
output (MIMO) detectors under correlated channels



and  imperfect  coefficients  channel  estimation.  A
number of signal detection principles and techniques,
including the minimum mean squared error detector
with  and  without  ordered  successive  interference
cancellation; the sphere decoding MIMO detection,
as well as promising near-orthogonal transformation
techniques  combined  with  these  detectors,  namely
the lattice reduction and the QR decomposition are
analysed  under  the  perspective  of  complexity-
performance  tradeoff.  While  in  most  of  available
works  perfect  channel  state  information  and
uncorrelated channels have been considered, herein
the  complexity-performance  tradeoff  has  been
analysed  and  compared  with  the  maximum
likelihood  (ML)  limit  under  specific  but  practical
scenarios of interest, namely: high spectral efficiency
scenario;  channel  error  estimates;  channel/antenna
correlation; combined channel errors and correlated
channels.  Under  performance-complexity
perspective,  the  optimum  ML–MIMO  detector  is
deployed  as  reference  aiming  to  evaluate  the
efficiency and performance degradation of those sub-
optimal  MIMO  detectors  operating  under  hostile
channel conditions.

From  the  literature,  it  is  identified  some
major  limitations  like  Lattice  Reduction  (LR)
operation  is  not  applicable  for  low-correlated
channel condition with high convergence speed, LR
method produce  high  computational  complexity.  If
the antenna dimension is large and it may not applied
in underdetermined MIMO systems. Hence, there is
a  need  for  some  new  technique  that  adapt  all
constraints  and  achieve  good  performance  over
other.

III. Proposed research methodology

To overcome the limitations of LR detection, the
block  wise  is  employed  in  large  scale  MIMO  for
MCMC system.Based on the MCMC algorithm, the
large-scale MIMO system can be divided into several
sub-systems and processed block by block.In MCMC
algorithm,  the  detector  is  carried  out  by  AMP  is
applied  within  the  successive  interference
cancellation (SIC) detection to satisfy the sampling
distribution  of  the  Gibbs  method  in  each  block..It
shows  that  thecomplexity  analysis  of  large  scale
MIMO  detector  provide  a  balanced  trade-off
between computational complexity and performance
in  both  large-scale  and  underdetermined  MIMO
systems.

Vila  and  Schniter  (2013)  presented  the  AMP
utilization  in  Expectation-maximization  Gaussian-
mixture  approximate  message  passing.  Som  and
Schniter(2012)  implemented  the  AMP  in  imaging.
Hence, it is applied in complex algorithms to solve
the complex problems. In this exposition, we want to
emphasize the approximate message passing (AMP)
has  superior  complexity  when  serving  Massive
MIMO  uplink  detection  problems,  although  AMP
was initially proposed for solving bit error rate. 

a) Approximate message passing

The Massive MIMO architecture is to serve tens
of users by employing hundreds of antennas, 

y=Hx+w

where  the  channel H∈Cm×n has  its  elements
sampled  from NC(0,1/m)NC(0,1/m) , m≫n,  y∈Cm is
the received signal, AWGN noise components wi are
i.i.d  with NC(0,σ2);  regarding  the  transmitted x,  we
only  assume  that  it’s  zero  mean  and  finite
variance σ2s.Before  incorporating  the  AMP
algorithm,  we  should  be  well  aware  of  two facts:
directly using maximum a priori (MAP) argmaxp(x|
y)or  MMSE  estimation Ep(x|y)(X)to  work  with  the
exact prior degrade the necessity of employing AMP,
because  achieving  a  full  diversity  requires  an
extremely large set of constellation points, in which
AMP  works  slowly  while  doing  the  moment
matching process, not to mention problems about its
inability to converge to the lowest fixed point. In the
CDMA  multiuser  detection  theory,  their  “MMSE”
detector does not mean the one working with exact
prior, but rather the one assuming a Gaussian prior.

So  we  use  a  proxy  prior  for  detecting x,  i.e.,
assuming that xi∼NC(0,σ2s), even though it may be
inexact.  In  this  occurrence,  we  have  the  signal
power σ2s=2 in  QPSK, σ2s=10 in  16QAM,  etc.  So
the target function becomes.

(1)

(2)

(3)



(4)

where the initialization is to let r0=0, x0=0, α0=σ2s. In
terms of complexity, it only costs 2mn×(#Iteration).
Also, according to the equation (2) of the algorithm,
it  is  converging  extremely  fast.  On  the  contrary,
MMSE has complexity O(mn2). It is noteworthy that
known approximation  methods  to  MMSE,  such  as
Richardson’s  method  or  Newman  series
approximation,  both  fall  behind  the  complexity-
performance  trade-off  of  AMP  according  to  our
simulations.

b) Algorithmic steps for detection
Step  1:  Initialize  the  transmitter  and  receiver
antennas
Step 2: Calculate the SNR ratio
Step 3: Calculate the signal variance in QPSK
Step 4: Declare the iterations of AMP
Step  5:  Channel  estimation  using  LS  and  MMSE
estimators
Step  6:  Write  the  values  for  AMP  detector  and
perform the SNR comparison.
Step  7:  Provide  AMP  iteration  with  the  bit  error
representation.
Step  8:  Repeat  the  process  until  the  iteration  gets
completed.

c) Pseudo code for AMP detector in Large scale
MIMO

Initialized m, n
for s=SNRrange

SNRdb=s;
for monte=1:1000

Assign signal variance in QAM
       Signal variance in QPSK

Declare channel matrix
Noise variance in control by SNR in DB
Channel model
Iterations in AMP
    iterAMP1=2;
    load xes;
end
    count=count+1;
end
Plot the SER

In  the  case  of  the  MIMO  frequency  selective
channel  (convolutive  model),  the  system  can  be
reduced to the model in tanks to the linear prediction
method presented. Afterwards, AMP methods can be
applied. The following assumptions are considered: 

(1) H has full column rank M,
(2) The noise is additive white Gaussian independent
from the source signals, 
(3)  The  source  signals  are  independent  and
identically distributed (i.i.d), mutually independent.

IV. Simulation Results

In this section, we present the simulation results
with respect to the complexity and the Symbol error
rate  (BER)  to  illustrate  the  performances  of  the
proposed  method.  For  comparisons,  the  following
detectors are considered.

 MIMO detector with QPSK

 MIMO detector with QAM 

For  the  detection  of  underdetermined  MIMO
systems,  the  system  is  usually  divided  into  a
symmetric  sub-system  and  an  underdetermined  or
symmetric  one. In  general,  an exhaustive search is
often used to provide a near-optimal performance in
the  underdetermined  sub-system.  However,  the
computational complexity will become prohibitively
high  for  a  large  number of  transmit  antennas.  The
approximate message passing is done with the help
of 16 transmitter antennas and 4 receiver Antenna.

a) SER Performances of MIMO Systems

In  this  subsection,  we  show  the  SER
performance  improvement  of  the  proposed  block-
wise  detector  compared  with  the  conventional
method  with  16  ×  4  MIMO-QPSK  systems  and
MIMO-QAM systems.From Fig.  1  with  ρ  =  0, we
can observe the similar phenomenon which can be
explained as follows. In thei  -th sub-system, the LR
method can be used to find a closer ˆsi which results
in  (ri−  Hi  ˆsi)  ≈  0.  Unfortunately,  under  low-
correlated  channel  environment,  this  improved
decoding  performance  could  result  in  the  stalling
problem  where  the  sampler  is  locked  in  a  local
minimum easily.
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Figure1:BER performances of the 16 × 4 MIMO
system with QPSK.
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Figure 2: BER performances of the 16 × 4 MIMO
system with QAM.

It  is  observed  from  figure  2  that  the
computational  consuming  can  be  reduced  by  the
block-wise  processing.  Moreover,  comparing  the
standard with MIMO module with QPSK and MIMO
module  with  QAM methods,  we  can  find  that  the
complexity is reduced in reduced. It is significantly
reduced by the block-wise sampling. Consequently,
the proposed method can enjoy a trade-off between
the performances. 

V. Conclusion
In  this  research,  a  modulation  wise

sampling method using MCMC approach with QAM
and  QPSK was  studied  for  the  detection  of  large-
scale  (underdetermined)  MIMO.  Lower-complexity
suboptimal  algorithm  is  introduced.  By  using  the
Approximate Message Passing (AMP) algorithm, the
MCMC detector can be carried out in a block-wise
manner.  Through  complexity  analysis  and  various
simulation  results,  we  verified  that  the  proposed
detector  can  provide  a  balanced  trade-off  between
computational  complexity and performance in both
large-scale and underdetermined MIMO systems. In

addition,  it  was  illustrated  that  the  16*4iteration
cannot  improve  the  performance  of  the  proposed
approach in QAM channel since the AMP algorithm
MCMC  algorithm  is  employed.In  future,  all  the
issues  in  MIMO-QPSK/QAM  systems  including
allocation  of  resources,  channel  estimation,
modelling/  channel  measurements,  multi  user
detection and a host of others has to be discussed. 
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