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Abstract— Tuberculosis (TB) is the second leading cause of death 

from an infectious disease worldwide, after HIV. TB is an infectious 

disease caused by the bacillus Mycobacterium tuberculosis, which 

typically affects the lungs. Several antibiotics exist for treating TB. 

While mortality rates are high when left untreated, treatment with 

antibiotics greatly improves the chances of survival. When left 

undiagnosed and thus untreated, mortality rates of patients with 

tuberculosis are high and diagnosing tuberculosis still remains a 

challenge. An automated approach for detecting tuberculosis in 

conventional posteroanterior chest radiographs is proposed. First it 

extracts the lung region using a graph cut segmentation 

(GCS)method. For this lung region, a set of texture and shape 

features are computed, which enable the X-rays to be classified as 

normal or abnormal using a binary classifier.  The proposed 

computer-aided diagnostic system for TB screening, which is ready 

for field deployment, achieves a performance that approaches the 

performance of human experts. 

 
Key Words— Cross-layer strategies, Markov Decision 

Process, Reinforcement learning. 

 

INTRODUCTION 

   1.1 INTRODUCTON  

   Tuberculosis is a major health threat in 

many regions of the world. Opportunistic infections in 

immunocompromised HIV/AIDS patients and multi-drug-

resistant bacterial strains have exacerbated the problem, 

while diagnosing tuberculosis still remains a challenge. TB is 

an infectious disease caused by the bacillus Mycobacterium 

tuberculosis, which typically affects the lungs. It spreads 

through the air when people with active TB cough, sneeze, or 

otherwise expel infectious bacteria. Several antibiotics exist 

for treating TB. While mortality rates are high when left 

untreated, treatment with antibiotics greatly improves the 

chances of survival. In clinical trials, cure rates over 90% 

have been documented. Unfortunately, diagnosing TB is still 

a major challenge. The definitive test for TB is the 

identification of Mycobacterium tuberculosis in a clinical 

sputum or pus sample, which is the current gold standard. 

However, it may take several months to identify this slow-

growing organism in the laboratory. Another technique is 

sputum smear microscopy, in which bacteria in sputum 

samples are observed under a microscope. In addition, 

several skin tests based on immune response are available for 

determining whether an individual has contracted TB. 

However, skin tests are not always reliable. The latest 

development for detection are molecular diagnostic tests that 

are fast and accurate, and that are highly sensitive and 

specific. 

 An automated approach for detecting TB 

manifestations in chest X-rays (CXRs), based on our earlier 

work in lung segmentation and lung disease classification is 

proposed. An automated approach to X-ray reading allows 

mass screening of large populations that could not be 

managed manually. A posteroanterior radiograph (X-ray) of a 

patient’s chest is amandatory part of every evaluation for TB. 

The chest radiograph includes all thoracic anatomy and 

provides a high yield, given the low cost and single source. 

Therefore, a reliable screening system for TB detection using 

radiographs would be a critical step towards more powerful 

TB diagnostics. It is therefore important to detect patients 

with TB infections, not only to cure the TB infection itself 

but also to avoid drug incompatibilities. Medical personnel 

with little radiology background need to be able to operate 

the screening system. The target platform for our automated 

system are portable X-ray scanners, which allow screening of 

large parts of the population in rural areas. At-risk individuals 

identified by our system are then referred to a major hospital 

for treatment. 

1.2  FUNDAMENTALS OF MEDICAL IMAGE 

PROCESSING 

        Image processing is any form of signal 

processing for which the input is an image, such as a 

photograph or video frame; the output of image 

processing may be either an image or a set of 

characteristics or parameters related to the image. Most 

image-processing techniques involve treating the image 

as a two-dimensional signal and applying standard 

signal-processing techniques to it. 
Medical imaging is the technique, process and art of 

creating visual representations of the interior of a body for 

clinical analysis and medical intervention. Medical imaging 

seeks to reveal internal structures hidden by the skin and 

bones, as well as to diagnose and treat disease. Medical 

imaging also establishes a database of normal anatomy and 

physiology to make it possible to identify abnormalities. 

Although imaging of removed organs and tissues can be 

performed for medical reasons, such procedures are usually 

considered part of pathology instead of medical imaging. 

As a discipline and in its widest sense, it is part of 

biological imaging and incorporates radiology which uses the 

imaging technologies of X-ray radiography, magnetic 

resonance imaging, medical ultrasonography or ultrasound, 

endoscopy, elastography, tactile imaging, thermography, 

medical photography and nuclear medicine functional 

imaging techniques as positron emission tomography. 

Measurement and recording techniques which are not 

primarily designed to produce images, such as 

electroencephalography (EEG), magnetoencephalography 
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(MEG), electrocardiography (EKG), and others represent 

other technologies which produce data susceptible to 

representation as a parameter graph vs. time or maps which 

contain information about the measurement locations. 

Medical imaging is often perceived to designate the set 

of techniques that noninvasively produce images of the 

internal aspect of the body. In this restricted sense, medical 

imaging can be seen as the solution of mathematical inverse 

problems. This means that cause (the properties of living 

tissue) is inferred from effect (the observed signal). In the 

case of medical ultrasonography, the probe consists of 

ultrasonic pressure waves and echoes that go inside the tissue 

to show the internal structure. In the case of projectional 

radiography, the probe uses X-ray radiation, which is 

absorbed at different rates by different tissue types such as 

bone, muscle and fat. 

1.3  IMAGE SEGMENTATION  

       In computer vision, image segmentation is the 

process of partitioning a digital image into multiple segments 

(sets of pixels, also known as superpixels). The goal of 

segmentation is to simplify and/or change the representation 

of an image into something that is more meaningful and 

easier to analyze. Image segmentation is typically used to 

locate objects and boundaries (lines, curves, etc.) in images. 

More precisely, image segmentation is the process of 

assigning a label to every pixel in an image such that pixels 

with the same label share certain characteristics. 

The result of image segmentation is a set of segments 

that collectively cover the entire image, or a set of contours 

extracted from the image (see edge detection). Each of the 

pixels in a region are similar with respect to some 

characteristic or computed property, such as color, intensity, 

or texture. Adjacent regions are significantly different with 

respect to the same characteristic(s). When applied to a stack 

of images, typical in medical imaging, the resulting contours 

after image segmentation can be used to create 3D 

reconstructions with the help of interpolation algorithms like 

marching cubes. 

In general, segmentation in medical images has to 

cope with poor contrast, acquisition noise due to hardware 

constraints, and anatomical shape variations. Lung 

segmentation is no exception in this regard. A lung model 

that represents the average lung shape of selected training 

masks is incorporated. Then select these masks according to 

their shape similarity as follows. Linearly align all training 

masks to a given input CXR. Then, compute the vertical and 

horizontal intensity projections of the histogram equalized 

images. To measure the similarity between projections of the 

input CXR and the training CXRs, use the Bhattacharyya 

coefficient. Then use the average mask computed on a subset 

of the most similar training masks as an approximate lung 

model for the input CXR. 

1.4 METRICS ASSOCIATED WITH SEGMENTATION 

Segmentation is treated as the classification 

problem. The classification success is measured as producer’s 

accuracy or completeness (the number of pixels that are 

correctly assigned to a certain class divided by the total 

number of pixels of that class in the input data) and user's 

accuracy or correctness (the number of pixels correctly 

assigned to a certain class divided by the total numbers of 

pixels automatically assigned to that class). 

 The error matrix consists of a series of rows and 

columns.  The headings of the rows and columns are the 

classes of interest.  The columns contain the ground reference 

data while the rows contain the classified information.  ―The 

intersection of the rows and columns summarize the number 

of sample units of particular class. Numbers not found within 

the diagonals are errors. Each error that is made can be 

referred to as an omission error and a commission error.  An 

omission error is an error where a sample (ie. pixels) should 

have been included in a certain class, but was included in 

another. Commission errors are when samples are included in 

a certain class when they shouldn’t be. The overall accuracy 

is determined by summing all of the numbers within the 

matrices diagonal (correctly identified samples) and dividing 

by the sum of all the errors (numbers found outside the 

diagonal).  

Another type of accuracy assessment is through 

Kappa analysis.  This is a discrete multivariate technique that 

produces a K, which is an estimate of Kappa.  This statistic is 

a measure of how well a classification map and the associated 

reference data agree with each other.  This agreement is 

based on the major diagonal of the error matrix and a chance 

agreement. Strong agreement occurs if the K is greater than 

0.80.  Moderate agreement occurs when K values fall 

between 0.40 and 0.80 and poor agreement occurs with K 

values less than 0.40. 

1.5  SEGMENTATION USING GRAPH CUT METHOD 

 Segmentation is an important part of image 

analysis. It refers to the process of partitioning an image into 

multiple segments. More  precisely, image segmentation is 

the process of assigning a label to every pixel in an image 

such that pixels with the same label share certain visual 

characteristics. The goal of segmentation is to simplify and/or 

change the representation of an image into something that is 

more meaningful and easier to analyse. Segmentation can be 

used for object recognition, occlusion boundary estimation 

within motion or stereo systems, image compression, image 

editing, or image database look-up. Segmentation by 

computing a minimal cut in a graph is a new and quite 

general approach for segmenting images. This approach 

guarantees global solutions, which always find best solution, 

and in addition these solutions are not depending on a good  

initialization. In our case the segmentation will be based on 

the image gradient with seeds provided by the user and on the 

mean intensity of an object.  
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The paper is organized as follows. The next section gives 

a survey on lung segmentation. Section 3 highlights the 

Methodologies. Section 4 highlights the Experimental 

Evaluation.  Finally, Section 5 concludes the paper. 

LITERATURE SURVEY 

2.1. OVERVIEW 

  Literature survey is done in order to make a feasible 

study about the existing problems to formalize the 

organization’s requirements. This process forms the basis 

of software development and validation by understanding 

the domain for the software as well as required function 

behavior and performance. 

Sema Candemir, Stefan Jaeger, Kannappan 

Palaniappan, Sameer Antani, and George Thoma in their 

work of Graph Cut Based Automatic Lung Boundary 

Detection in Chest Radiographs presents a graph cut 

based robust lung segmentation method that detects the 

lungs with high accuracy. The method consists of two 

stages: (i) average lung shape model calculation, and (ii) 

lung boundary detection based on graph cut. Preliminary 

results on public chest x-rays demonstrate the robustness 

of the method. 

Sema Candemir, Kannappan Palaniappan, and 

Yusuf Sinan Akgul in their work of ―Multi-class 

regularization parameter learning for graph cut image 

segmentation,‖ claim that l can be learned by local features 

which hold the regional characteristics of the image. And 

hence proposed a l estimation system which is modeled as 

a multi-class classification scheme. Then demonstrated the 

performance of the approach within graph cut 

segmentation framework via qualitative results on chest x-

rays. Experimental results indicate that predicted 

parameters produce better segmentation results. 

S. Jaeger, A. Karargyris, S. Antani, and G. Thoma, 

―Detecting tuberculosis in radiographs using combined 

lung masks,‖ in their work presents an automated approach 

for detecting TB on conventional  posteroanterior chest 

radiographs. The idea is to provide developing countries, 

which have limited access to radiological services and 

radiological expertise, with an inexpensive detection 

system that allows screening of large parts of the 

population in rural areas. And it present results produced 

by our TB screening system. It combines a lung shape 

model, a segmentation mask, and a simple intensity model 

to achieve a better segmentation mask for the lung.  With 

the improved masks, we achieve an area under the ROC 

curve of more than 83%, measured on data compiled 

within a tuberculosis control program.  

T. Xu, I. Cheng, andM.Mandal, ―Automated cavity 

detection of infectious pulmonary tuberculosis in chest 

radiographs,‖ have validated our technique on 50 chest 

radiographs (2048 × 2048 resolution, pixel size 0.25 mm, 

Delft Imaging Systems, The Netherlands) containing in 

total 50 cavities. These cavities have been manually 

outlined by three human experts, one chest radiologist and 

two readers certified to read chest radiographs according to 

a tuberculosis scoring system. The automatic border 

segmentations are compared with manual segmentations 

provided by the readers using Jaccard overlapping 

measure. The agreement between the automatically 

determined outlines is comparable to the inter-observer 

agreement. 

  M. Freedman, S. Lo, J. Seibel, and C. Bromley, 

―Lung nodules: Improved detection with software that 

suppresses the rib and clavicle on chest radiographs,‖ 

demonstrated possible superiority in the performance of a 

radiologist who is tasked with detecting actionable nodules 

and aided by the bone suppression and soft-tissue 

visualization algorithm of a new software program that 

produces a modified image by suppressing the ribs and 

clavicles, filtering noise, and equalizing the contrast in the 

area of the lungs. 

  Y. Boykov, O. Veksler, and R. Zabih, ―Fast 

approximate energy minimization via graph cuts,‖ 

addressed the problem of minimizing a large class of 

energy functions that occur in early vision. The major 

restriction is that the energy function's smoothness term 

must only involve pairs of pixels. And proposed two 

algorithms that use graph cuts to compute a local 

minimum even when very large moves are allowed. The 

first move considered is an α, β swap: for a pair of labels 

α, β  this move exchanges the labels between an arbitrary 

set of pixels labeled α and another arbitrary set labeled β. 

Our first algorithm generates a labeling such that there is 

no swap move that decreases the energy. The second move 

considered is an  -expansion: for a label α , this move 

assigns an arbitrary set of pixels the label α. Our second 

algorithm, which requires the smoothness term to be a 

metric, generates a labeling such that there is no expansion 

move that decreases the energy. Moreover, this solution is 

within a known factor of the global minimum. It 

experimentally demonstrated the effectiveness of our 

approach on image restoration, stereo and motion. 

  K. Palaniappan, F. Bunyak, P. Kumar, I. Ersoy, S. 

Jaeger, K. Ganguli, A. Haridas, J. Fraser, R. Rao, and G. 

Seetharaman, ―Efficient feature extraction and likelihood 

fusion for vehicle tracking in low frame rate airborne 

video,‖  developed an interactive low frame rate tracking 

system based on a derived rich set of features for vehicle 

detection using appearance modeling combined with 

saliency estimation and motion prediction. Instead of 

applying subspace methods to very high-dimensional 

feature vectors, we tested the performance of feature 

fusion to locate the target of interest within the prediction 

window. Preliminary results show that fusing the feature 

likelihood maps improves detection but fusing feature 

maps combined with saliency information actually 

degrades performance. 

N. Dalal and B. Triggs, ―Histograms of oriented 

gradients for human detection‖, show experimentally that 

grids of Histograms of Oriented Gradient (HOG) 

descriptors significantly outperform existing feature sets 

for human detection. And the  study  influence of each 

stage of the computation on performance, concluding that 

fine-scale gradients, fine orientation binning, relatively 

coarse spatial binning, and high-quality local contrast 

normalization in overlapping descriptor blocks are all 

important for good results. The new approach gives near-
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perfect separation on the original MIT pedestrian database, 

so it introduced a more challenging dataset containing over 

1800 annotated human images with a large range of pose 

variations and backgrounds. 

METHODOLOGIES 

 

3.1.SYSTEM OVERVIEW 

3.1.1 Existing System 

  The advent of digital chest radiography and the 

possibility of digital image processing has given new 

impetus to computeraided screening and diagnosis. Still, 

despite its omnipresence in medical practice, the standard 

CXR is a very complex imaging tool. In the last 10 years, 

several ground-breaking papers have been published on 

computer-aided diagnosis (CAD) in CXRs. However, there 

is no doubt that more research is needed to meet the 

practical performance requirements for deployable 

diagnostic systems. In a recent survey, states that 45 years 

after the initial work on computer-aided diagnosis in chest 

radiology, there are still no systems that can accurately 

read chest radiographs. Automated nodule detection is 

becoming one of the more mature applications of decision 

support/automation for CXR and CT. Several studies have 

been published evaluating the capability of commercially 

available CAD systems to detect lung nodules. The result 

is that CAD systems can successfully assist radiologists in 

diagnosing lung cancer. However, nodules represent only 

one of many manifestations of TB in radiographs. In recent 

years, due to the complexity of developing fullfledged 

CAD systems for X-ray analysis, research has 

concentrated on developing solutions for specific 

subproblems. The segmentation of the lung field is a 

typical task that any CAD system needs to support for a 

proper evaluation of CXRs. Other segmentations that may 

be helpful include the segmentation of the ribs, heart, and 

clavicles. Lung segmentation methods including active 

shapes, rule-based methods, pixel classification, and 

various combinations thereof exist. 

  

3.1.2 Proposed System 

 Tuberculosis (TB) is the second leading cause of death 

from an infectious disease worldwide, after HIV. TB is an 

infectious disease caused by the bacillus Mycobacterium 

tuberculosis, which typically affects the lungs. Several 

antibiotics exist for treating TB. While mortality rates are 

high when left untreated, treatment with antibiotics greatly 

improves the chances of survival. When left undiagnosed 

and thus untreated, mortality rates of patients with 

tuberculosis are high and diagnosing tuberculosis still 

remains a challenge. An automated approach for detecting 

tuberculosis in conventional posteroanterior chest 

radiographs is proposed. First it extracts the lung region 

using a graph cut segmentation method. For this lung 

region, a set of texture and shape features are computed, 

which enable the X-rays to be classified as normal or 

abnormal using a binary classifier.  The proposed 

computer-aided diagnostic system for TB screening, which 

is ready for field deployment, achieves a performance that 

approaches the performance of human experts. 

  

 3.1.3   Graph Cut Based Lung Segmentation 

The proposed work implements methods for lung 

segmentation, feature computation, and classification. 

First, our system segments the lung of the input CXR 

using a graph cut optimization method in combination with 

a lung model. For the segmented lung field, our system 

then computes a set of features as input to a pre-trained 

binary classifier. Finally, using decision rules and 

thresholds, the classifier outputs its confidence in 

classifying the input CXR as a TB positive case. 

  

The proposed work of lung segmentation is modeled as an 

optimization problem that takes properties of lung 

boundaries, regions, and shapes into account. In general, 

segmentation in medical images has to cope with poor 

contrast, acquisition noise due to hardware constraints, and 

anatomical shape variations. Lung segmentation is no 

exception in this regard. It also incorporates a lung model 

that represents the average lung shape of selected training 

masks. Then it selects these masks according to their shape 

similarity as follows. First linearly aligns all training 

masks to a given input CXR. Then, it computes the vertical 

and horizontal intensity projections of the histogram 

equalized images. To measure the similarity between 

projections of the input CXR and the training CXRs, we 

use the Bhattacharyya coefficient. Then it used the average 

mask computed on a subset of the most similar training 

masks as an approximate lung model for the input CXR. In 

particular, we use a subset containing the five most similar 

training masks to compute the lung model. This empirical 

number produced the best results in our experiments. 

Increasing the subset size to more than five masks will 

decrease the lung model accuracy because the shapes of 

the additional masks will typically differ from the shape of 

the input X-ray. 

  In a second step, it has been employed a graph cut 

approach and model the lung boundary detection with an 

objective function. To formulate the objective function, it 

is defined three requirements a lung region has to satisfy: 

1) the lung region should be consistent with typical CXR 

intensities expected in a lung region, 2) neighboring pixels 

should have consistent labels, and 3) the lung region needs 

to be similar to the lung model that has been computed. 
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  According to our method, the optimal configuration 

of f is given by the minimization of the following objective 

function: 

E(f) = Ed(f) + Es(f) + Em(f) 

where Ed , Es , Em represent the region, boundary, and 

lung model properties of the CXR, respectively. Our 

average lung model is a 2-D array which contains the 

probabilities of a pixel p being part of the lung field. Using 

the three energy terms given above, minimize the objective 

function with a fast implementation of min-cut/max-flow 

algorithm.  

  

3.1.4   Features 

To describe normal and abnormal patterns in the 

segmented lung field, it has been experimented with two 

different feature sets.  

3.1.4.1  Object Detection Inspired Features 

This method used features that have successfully applied 

to microscopy images of   cells for which they are 

classified the cell cycle phase based on appearance 

patterns. 

  

  The first set is a combination of shape, edge, and 

texture descriptors. For each descriptor, it computes a 

histogram that shows the distribution of the different 

descriptor values across the lung field. Each histogram bin 

is a feature, and all features of all descriptors put together 

form a feature vector that is the input to our classifier. 

Through empirical experiments, it is found that using 32 

bins for each histogram gives us good practical results. In 

particular, it used the following shape and texture 

descriptors. 

• Intensity histograms (IH). 

• Gradient magnitude histograms (GM). 

• Shape descriptor histograms (SD) 

• Curvature descriptor histograms (CD) 

• Histogram of oriented gradients (HOG) 

• Local binary patterns (LBP) 

  

3.1.4.2 CBIR-Based Image Features 

 For our second feature set, Set B, we use a group of low-

level features motivated by content-based image retrieval 

(CBIR). This feature collection includes intensity, edge, 

texture and shape moment features, which are typically 

used by CBIR systems. The entire feature vector has 594 

dimensions, which is more than three times larger than the 

feature vector of Set A, and which allows us to evaluate 

the effect of high- dimensional feature spaces on 

classification accuracy. We extract most of the features, 

except for Hu moments and shape features, based on the 

Lucene image retrieval library. 

  

3.1.5  Classification 

To detect abnormal CXRs with TB, we use a support vector 

machine (SVM), which classifies the computed feature 

vectors into either normal or abnormal. An SVM in its 

original form is a supervised nonprobabilistic classifier that 

generates hyperplanes to separate samples from two different 

classes in a space with possibly infinite dimension. The 

unique characteristic of an SVM is that it does so by 

computing the hyperplane with the largest margin; i.e., the 

hyperplane with the largest distance to the nearest training 

data point of any class. Ideally, the feature vectors of 

abnormal CXRs will have a positive distance to the 

separating hyperplane, and feature vectors of normal CXRs 

will have a negative distance. The larger the distance the 

more confident we are in the class label. Therefore it used 

these distances as confidence values to compute the ROC 

curves. 

 
Fig: 3.1 System Architecture 
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IV. EXPERIMENTAL EVALUATION 

 

 

 
 

Fig4.3.1 Example lung segmentations for MC CXRs. Note the 

over-segmentation in the apices. The CXR on the left-hand side 

has irregular infiltrates in the left lung. The CXR in the middle has 

small noncalcified nodules in the upper lobes. Grouped 

noncalcified nodules are visible in the CXR on the right-hand side. 

  

  Fig. 4.3.1 shows three examples of our lung 

segmentation applied to CXRs from the MC dataset. The 

leftmost CXR has calcifications in the right upper lung and 

extensive irregular infiltrates in the left lung with a large area 

of cavitation. The CXR in the middle of Fig. 4.3.1 shows 

scars in the right upper lung, and the  rightmost CXR has 

scars in the left upper lung and some infiltrates as well. Fig. 

4.3.1 also shows the outlines of our segmentation masks for 

all three lungs. It can be noticed that the segmentation masks 

capture the general shape of the lungs. Due to the use of a 

lung model, the infiltrates have not impaired the quality of 

the segmentations, especially in the leftmost CXR. Again it 

can be seen a slight leakage of the segmentation in the apical 

regions for the second and thirdCXR. The lower outlines 

toward the diaphragm could also be tighter in these images.  

As performance measure, the overlap measure Ω is 

used  

Ω  = (TP / (TP + FP + FN)) 

  where TP is the correctly identified lung area (true 

positive), FP is the incorrectly identified lung area (false 

positive), and FN is the missed lung area (false negative). 

Our segmentation performance is 4.5% lower than the human 

performance reported for the JSRT set, which is 94.6%.  

 

V. CONCLUSION AND FUTURE WORK 

  An automated system that screens 

CXRs for manifestations of TB is developed. When 

given a CXR as input, our system first segments the 

lung region using an optimization method based on 

graph cut. This method combines intensity 

information with personalized lung atlas models 

derived from the training set. It computes a set of 

shape, edge, and texture features as input to a binary 

classifier, which then classifies the given input 

image into either normal or abnormal.  

  

To improve the performance further, one 

approach would be to find optimal weights for the 

terms in the graph cut energy function. Another 

possibility would be to use more atlas-based lung 

models for computing the average lung model. It is 

surprising that a relatively high performance is 

achieved when compared to other approaches by 

using only global features. This may indicate that 

the combination of local features in the literature is 

still suboptimal.  
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