
International Journal of Advanced Information in Engineering Technology (IJAIET) ISSN: xxxx: 

Vol.4, No.4, December 2014 

 

28 

 

Effective in Delay Tolerant Networks with More 

Destinations

     Sumathi. A. 

Department of IT 

Sona college of Teechnology, Salem. 

a.sumathi0111@gmail.com 
 

 

 

 
 

Abstract—We study the trade-off between delivery delay 

and energy consumption in a delay tolerant network in 

which a message (or a file) has to be delivered to each of 

several destinations by epidemic relaying. In addition to 

the destinations, there are several other nodes in the 

network that can assist in relaying the message. We first 

assume that, at every instant, all the nodes know the 

number of relays carrying the packet and the number of 

destinations that have received the packet. We formulate 

the problem as a controlled continuous time Markov chain 

and derive the optimal closed loop control (i.e., forwarding 

policy). However, in practice, the intermittent connectivity 

in the network implies that the nodes may not have the 

required perfect knowledge of the system state. To address 

this issue, we obtain an ODE (i.e., fluid) approximation for 

the optimally controlled Markov chain. This fluid 

approximation also yields an asymptotically optimal open 

loop policy. Finally, we evaluate the performance of the 

deterministic policy over finite networks. Numerical 

results show that this policy performs close to the optimal 

closed loop policy.  

I. INTRODUCTION 

Delay tolerant networks (DTNs) [1] are sparse wireless ad hoc 

networks with highly mobile nodes. In these networks, the link 

between any two nodes is up when these are within each 

other’s transmission range, and is down otherwise. In 

particular, at any given time, it is unlikely that there is a 

complete route between a source and its destination. We 

consider a DTN in which a short message (also referred to as a 

packet) needs to be delivered to multiple (say, M) destinations. 

There are also N potential relays that do not themselves 

“want” the message but can assist in relaying it to the nodes 

that do. At time t = 0, N0 of the relays have copies of the 

packet. All nodes are assumed to be mobile. In such a 

network, a common technique to improve packet delivery 

delay is epidemic relaying [2]. We consider a controlled 

relaying scheme that works as follows. Whenever a node 

(relay or destination) carrying the packet meets a relay that 

does not have a copy of the packet, then the former has the 

option of either copying or not copying. When a node that has 

the packet meets a destination that does not, the packet can be 

delivered. 

We want to minimize the duration to copy the packet 

to a significant (say α) fraction of the destinations receive the 

packet; we refer to this duration as delivery delay. On the one 

hand, copying the packet to a relay incurs a transmission cost. 

On the other hand, this copying increases the number of 

carriers of the packet and thereby potentially reduces the 

delivery delay. We focus on the problem of the control of 

forwarding. 

 

II. RELATED WORK 

 Analysis and control of DTNs with single source and 

single-destination has been widely studied. Groenevelt et al. 

[3] modeled epidemic relaying and two-hop relaying using 

Markov chains, and derived the average delay and number of 

copies generated until the time of delivery. 

Zhang et al. [4] developed a unified framework based 

on ordinary differential equations to study epidemic routing 

and its variants. 

Neglia and Zhang [5] were the first to study the 

optimal control of relaying in DTNs with a single destination 

and multiple relays. They assumed that all the nodes have 

perfect knowledge of the number of nodes carrying the packet. 

Their optimal closed loop control is a threshold policy - when 

a relay that does not have a copy of the packet is met, the 

packet is copied if and only if the number of relays carrying 

the packet is below a threshold. Due to the assumption of 

complete knowledge, the performance reported is a lower 

bound for the cost in a real system. 

Altman et al. [6] addressed the optimal relaying 

problem for a class of monotone relay strategies which 

includes epidemic relaying and two-hop relaying. In 

particular, they derived static and dynamic relaying policies. 

 Altman et al. [7] considered optimal discrete-time 

two-hop relaying. They also employed stochastic 

approximation to facilitate online estimation of network 

parameters.  
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In another paper, Altman et al. [8] considered a 

scenario where active nodes in the network continuously 

spend energy while beaconing. Their paper studied the joint 

problem of node activation and transmission power control. 

 Li et al. [9] considered several families of open loop 

controls and obtain optimal controls within each family. 

Deterministic fluid models expressed as ordinary differential 

equations have been used to approximate large Markovian 

systems.  

Kurtz [10] obtained sufficient conditions for the 

convergence of Markov chains to such fluid limits.  

Darling [11] considers the scenario when the 

Markovian system satisfies the conditions in [10] only 

over a given set. He shows that the scaled processes, until they 

exit from this set, converge to a fluid limit. Darling and Norris 

[12] generalize the conditions for convergence, e.g., uniform 

convergence of the mean drifts of Markov chains and 

Lipschitz continuity of the limiting drift function, prescribed 

in [10]. Gast and Gaujal [13] use differential inclusions to 

address the scenario where the limiting drift functions are not 

continuous, and hence the differential equations are not well 

defined. 

 Gast et al. [14] study an optimization problem on a 

large Markovian system. They show that solving the limiting 

deterministic problem yields an asymptotically optimal policy 

for the original problem. 

 
III. THE SYSTEM MODEL 

 

We consider a set of K := M + N mobile nodes. 

These include M destinations and N relays. At t = 0, a packet 

is generated and immediately copied to N0 relays (e.g., via a 

broadcast from a cellular network). Alternatively, these N0 

nodes can be thought of as source nodes. 

1) Mobility Model: We model the point process of 

the meeting instants between pairs of nodes as independent 

Poisson point processes, each with rate λ. Groenevelt et al. [3] 

validate this model for a number of common mobility models 

(random walker, random direction, random waypoint). In 

particular, they establish its accuracy under the assumptions of 

small communication range and sufficiently high speed of 

nodes. 

2) Communication Model: Two nodes may 

communicate only when they come within transmission range 

of each other, i.e., at the so called meeting instants. The 

transmissions are assumed to be instantaneous. We assume 

that that each transmission of the packet incurs unit energy 

expenditure at the transmitter. 

3) Relaying Model: We assume that a controlled 

epidemic relay protocol is employed. Throughout, we use the 

terminology relating to the spread of infectious diseases. A 

node with a copy of the packet is said  to be infected. A node 

is said to be susceptible until it receives a copy of the packet 

from another infected node. Thus at t = 0,N0 nodes are infected 

while M + N − N0 are susceptible. 

   

  A. THE FORWARDING PROBLEM 

The packet has to be disseminated to all the M 

destinations. However, the goal is to minimize the duration 

until a fraction α (α < 1) of the destinations receive the packet. 

At each meeting epoch with a susceptible relay, an infected 

node (relay or destination) has to decide whether to copy the 

packet to the susceptible relay or not. Copying the packet 

incurs unit cost, but promotes the early delivery of the packet 

to the destinations. We wish to find the trade-off between 

these costs by minimizing 

E{Td + γEc} (1) 

where Td is the time until which at least M_ := ⌈αM⌉ 
destinations receive the packet, Ec is the total energy 

consumption due to transmissions of the packet and γ is the 

parameter that relates energy consumption cost to delay cost. 

Varying γ helps studying the trade-off between the delay and 

the energy costs. 

 

B. OPTIMAL FORWARDING 

We derive the optimal forwarding policy under the 

assumption that, at any instant of time, all the nodes have full 

information about the number of relays carrying the packet 

and the number of destinations that have received the packet. 

 
IV. ASYMPTOTICALLY OPTIMAL FORWARDING 

 

In states [M_ − 1] × [N0 : N] × {r}, the optimal action, 

which is governed by the function _(m, n), requires perfect 

knowledge of the network state (i.e., m and n). However this 

may not be available to the decision maker due to intermittent 

connectivity. In this section, we derive an asymptotically 

optimal policy that does not require knowledge of network’s 

state but depends only on the time elapsed since the generation 

of the packet. Such a policy is implementable if the packet is 

time-stamped on generation and nodes’ clocks are 

synchronized. 

 
A. ASYMPTOTIC DETERMINISTIC DYNAMICS 

 
Our analysis closely follows Darling [11]. It is 

straightforward to show that following are the conditional 

expected drift rates of the optimally controlled CTMC. For 

(m(t), n(t)) ∈  [M − 1] × [N0 : N],dE(m(t)|(m(t),n(t))). 

 

Markov Decision Process (MDP) Formulation 

Let to and tk denote the meeting epochs of the 

infected nodes (relays or destinations) with the susceptible 

nodes. Define for $ and K>1. Let m(t) and n(t) be the numbers 

of infected destinations and relays, respectively. 

 
 

B. ASYMPTOTICALLY OPTIMAL POLICY 

Observe that φ(x, y) is decreasing in x and y both of 

which increase with t. Consequently φ(x(t), y(t)) decreases 
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with t. We define τ ∗  := inf{t ≥ 0 : φ(x(t), y(t)) ≤ 0}. The 

limiting deterministic dynamics suggests the following policy 

u∞ for the original forwarding problem. 
 

V. OVERVIEW OFTHE PROPOSED MECHANISM 
To recover the problem of existing system, we obtain 

an ODE approximation for the optimally controlled Markov 

chain. This fluid approximation also yields an asymptotically 

optimal open loop policy. Finally, we evaluate the 

performance of the deterministic policy over finite networks. 

We formulate the problem as a controlled continuous time 

Markov chain (CTMC), and obtain the optimal policy. The 

optimal policy relies on complete information of the network 

state, but availability of such information is constrained by the 

same connectivity problem that limits packet delivery. 

VI. ALGORITHM 

DSDV (Destination-Sequence Distance Vector) 
DSDV has one routing table, each entry in the table 

contains: destination address, number of hops toward 

destination, next hop address. Routing table contains all the 

destinations that one node can communicate. When a source A 

communicates with a destination B, it looks up routing table 

for the entry which contains destination address as B. Next 

hop address C was taken from that entry. A then sends its 

packets to C and asks C to forward to B. C and other 

intermediate nodes will work in a similar way until the packets 

reach B.  

DSDV use two types of packet to transfer routing 

information: full dump and incremental packet. The first time 

two DSDV nodes meet, they exchange all of their available 

routing information in full dump packet. From that time, they 

only use incremental packets to notice about change in the 

routing table to reduce the packet size. Every node in DSDV 

has to send update routing information periodically. If two 

routes have the same sequence number, route with smaller hop 

count to destination will be chosen. DSDV has advantages of 

simple routing table format, simple routing operation and 

guarantee loop-freedom. The disadvantages are (i) a large 

overhead caused by periodical update (ii) waste resource for 

finding all possible routes between each pair, but only one 

route is used. 

 

Figure 1: Path Finding Process: Route Request  

 

Figure 2: Path Finding Process: Route Reply
 

VII. PERFORMANCE EVALUATION 

We now show some numerical results to demonstrate 

the performance of the deterministic control. Let X = 0.2, Y = 

0.8, α = 0.8, Y0 = 0.2 and γ = 0.5. We vary λ from 0.00005 to 

0.05 and use K = 50, 100 and 200. we  plot the total number of 

copies to relays and the delivery delays corresponding to both 

the optimal and the asymptotically optimal deterministic 

policies. Evidently, the deterministic policy performs close to 

the optimal policy on both the fronts. We observe that, for a 

fixed K, both the mean delivery delay and the mean number of 

copies to relays decrease as λ increases. We also observe that, 

for a fixed λ, the mean delivery delay decreases as the network 

size grows. Finally, for smaller values of λ, the mean number 

of copies to relays increases with the network size, and for 

larger values of λ, vice-versa happens. 

 
A.  Performance Metrics 

We evaluate mainly the performance according to the 
following metrics. 
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False positive:In case of network failure, nodes may be 

falsely accused of misbehavior. The false positive should be 

kept low. 

 

Detection Efficiency:The ratio of detected misbehaving 

nodes to the total number of nodes. 

 

Delay Constraint: The delay constraint is averaged over all 

surviving data packets from the sources to the destinations. 

 

B.  Results 

Node Creation on set the values from source to Multiple 
Destinations. Neighbour Discovery to find the all nodes and 
packet transfer from source to multiple destinations. Finally, 
find the best path from source to multiple destinations on 
Figure1. Then find the xgraph on Packet Delivery Ratio of 
Figure 2. 

 
 

Figure 1: Find the Best Path from Source to Multiple 

Destinations. 

 

 
 

Figure2: show the results of xgraph on Packet Delivery 
Ratio. 

VIII. CONCLUSION 

In this research work, We have developed the control 

of forwarding in DTNs employing epidemic relaying, and 

obtained the optimal policy. We obtained an asymptotically 

optimal policy that does not require any information on the 

dynamic network state, and hence is feasible. In order to do so, 

we also extended the existing differential equation 

approximation results for Markov chains to controlled Markov 

chains. In our future work we want to study the scenario where 

packets come with a life-time and the goal is to maximize the 

fraction of destinations that receive the packet subject to the 

energy constraint. We also want to study the adaptive controls 

for the case when the network parameters (M,N, λ etc.) are not 

known to the source. 
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