
International Journal of Advanced Information in Engineering Technology (IJAIET) ISSN: xxxx:
Vol.1, No.4, December 2014

An Innovative Secure Dynamic Access using
RMDS in Cloud Computing

G Jeeva Rathanam*, V Balakumar

UG Students, Department of Information Technology,
*jrsuji@yahoo.com

Abstract-In the heterogeneous databases high amount of
data are being stored and transferred across the globe.
Data stored in the databases are exposed to threats and
attacks. Data loss during transmission and corruption
are also to be expected. In order to provide a
sustainable storage environment handling such
limitations, systems should be reliable and fault
tolerant. In the proposed research work RMDS, an
innovative mechanism which provides secure data
storage with recovery mechanisms during faults is
developed. Distributed data storage is employed using
data partitioning technique. Diagnostic support is
rendered by Recovery Oriented computing which
recovers the failed process that may include multiple
dependent processes. RMDS outperforms when
compared with existing system providing fault tolerance
and data security in cloud environment.

Keywords- Fault tolerance, Secure partitioning,
Recovery mechanisms.

I. INTRODUCTION

High speed internet services are readily available to
users nowadays. This paves way for the emergence of
advanced computing technologies. Cloud computing
has gained immense popularity in recent years as it
enables users to utilize all services located in any
remote environment. Among the services offered by
cloud service providers, cloud storage is widely used
by users all over the world. An overview of the cloud
storage is shown in Fig [1].

Fig.1. Overview of Cloud Storage System

In order to store the enormous amount of data,

cloud storage systems use many small-scale
independent storage systems. These systems together
form the entire cloud storage. Using cloud storage to
store the data has multiple advantages. Few of them
are, data stored using an account can be synced in
multiple devices using the same account. When the
user is working, less storage space is needed on
devices and avoiding storage of multiple conflicting
replicas etc.

Data stored in the cloud therefore has to be reliable
and secure. To increase reliability, remote data
integrity checking protocols are used which can find
corrupted data or faulty servers in the storage system.
On the other hand, to increase security and
scalability, fault tolerance has to be provided. In
order to make a system dependable, incorporating
fault tolerance is mandatory as shown in Fig [2]. For
storage servers, such systems are necessary as large
amount of data handling is done and at the same time
a great number of end users are simultaneously
seeking service.

Fig.2. Fault Tolerance in Cloud

The proposed system thus intends to introduce a
fault tolerant cloud storage system named RMDS.
Partitioning algorithm is used to provide an effective
storage system that provides high availability.
Security mechanisms are also included in order to
prevent unauthorized access of private data. Storage
and retrieval of data is made easier since the proctor
unit continuously monitors the system for
inconsistencies. Replication is done as needed to
produce replicas of the stored data to account for

10

International Journal of Advanced Information in Engineering Technology (IJAIET) ISSN: xxxx:
Vol.4, No.4, December 2014

inevitable data loss. A diagnostic support is
introduced which ensures that the process initiating
storage and retrieval are either stopped if faulty or
isolated in order to prevent other dependent processes
from behaving incoherently.

As organized the rest of the paper is follow:
Section II presents the related work in the respective
field of research. Section III gives the detailed
proposed architecture of the work. Section IV
presents the implementation issues of RMDS. Section
V provides the performance analysis of the proposed
system in comparison to the existing work. Section
VI finally provides the conclusion and the future
works.

II. RELATED WORK

To accomplish the competent data dynamics, the
present evidence of storage framework is enhanced
by influencing classic Merkle Hash Tree construction
for validation. The concept of bilinear aggregate
signature has been investigated and proved that they
are more securable [7]. Multiple auditing tasks were
not efficiently handled by this approach. The
proposed scheme design supports confident and well
organized active process on outsourced data. This
investigation demonstrates the future scheme is
highly proficient and flexible against Byzantine
failure, malicious data modification attack, and even
server colluding attacks [3]. But the system takes
longer time to recover.

In order to reduce the data management costs,
third party can use the outsourced data [5]. To
achieve this, one should offer security assurance for
the outsourced data. The FADE which is the secure
cover cloud storage system was implemented which
accomplish fine-grained, policy-based access control
and file assured deletion. The extensive experimental
studies were conducted; it revealed that FADE offers
security protection for outsourced data, while
establishing only minimum performance and
economic cost overhead. This work gives insights of
how to integrate value-added security characteristics
into today’s cloud storage services.

A distributed fault tolerant control technique is
presented for interrelated nonlinear uncertain
structure. Depending on the local state information,
linearly parameterized neural networks are used to
adjust the unidentified interconnections, fault
functions and communicated information from other
subsystems. The strength of the distributed fault
tolerant control structure is recognized during a
rigorous Lyapunov analysis [1].

In the recovery algorithm for Delta enabled grid
services, data dependencies examines the dependent
failed process by using database log files which are

produced through database transaction. The
algorithm guarantees contingencies among parallel
processes and recovery by supporting contingency,
rollback and compensation among grouped processes
[6]. Support for the methods to find attacks in legacy
systems are not taken into account. Partitioning and
encryption methodology are not used in this system
to provide more security and integrity. The fault
tolerant flight control scheme plan methodology is
proposed which is against the control surface
impairments and represented as a polytopic linear
parameter varying (LPV) system. Replication
examples focus to inner impairments which is used to
show the effectiveness of the proposed method.[4]

This system is enhanced in the proposed work by
incorporating recovery methods. Experiment
conducted response that the system can be acquired
for transition faults. It also illustrates that the
analytical resolution of this scheme is almost the
same as that attained by monitoring all output
replies.[2] Diagnostic support further makes the
system more efficient.

From the survey taken, it is found out that systems
with efficient and secure storage mechanisms lacked
recovery operations and thus the result obtained had
increased time taken to recover. The proposed work
therefore takes into account all the possibilities of
failure and provides techniques to make the system
more reliable.

III. RECOVERY MECHANISMS IN DATA STORAGE

While considering cloud storage, there are millions of
users who access it both locally and remotely. In
order to provide consistent data, integrity checks
have to be performed periodically. Partitioning
method ensures that corruption free data is accessed
by the users. At the same time, downtime in any
system will render the service unavailable.

To overcome this issue, the recovery framework is
used along with the storage service which provides
fault tolerance components that aids in uninterrupted
data transfer and storage services.

A. Partitioning data and storage in cloud

Partitioning checks the correctness of data stored
using pre-computation which is done before data is
storage and this increases the security. Encryption
and Decryption using keys are done which further
enhances security. Maintaining the integrity of data is
mandatory in a cloud storage system. As per the user
needs or requests, data can be retrieved from the
storage system. The user has the ability to decide
upon the type of data access and users of a particular
data.

11

International Journal of Advanced Information in Engineering Technology (IJAIET) ISSN: xxxx:
Vol.4, No.4, December 2014

Fig.3. Architecture of RMDS

Partitioning system enhances the performance of

storage service by providing security during storage
and retrieval. Data is first partitioned into smaller
sized blocks and encrypted during storage. The
partitioning function reduces the overhead of
maintaining complex data since they are split up into
blocks for easier storage. During data retrieval, the
data is decrypted and the smaller blocks are now
merged to form the original data which is then
accessed by the user. Threats which may occur
during this process are avoided using remote data
integrity checking. Storage costs are decreased and
performance is increased by employing dynamic
operations. Thus data retrieval and storage is done
optimally using the partitioning technique and
necessary security mechanisms are employed. But
failure of any one component may result in loss of
data. Therefore fault tolerant mechanisms are
introduced in this storage service which effectively
takes care of recovering back the failed transaction.

B. Ranking decisions

Ranking of processes involved in cloud storage is
done. This is carried out by first analyzing the
dependent processes and generating a connectivity
graph. Thus the rank is decided after evaluating the
graph. The decisions made help is providing ranks to
various read/write, insert/delete/update processes
taking place within the storage system. Furthermore,
the processes are executed in parallel which reduces
the time taken and enhances system utilization.
Failure of one process is thus handled effectively by
uninterrupted execution using other processes.

C. Monitoring and recovery support

Recovery method uses a monitoring unit called
proctor for continuous monitoring of all the processes. It
checks if there are any failures occurring and decides
whether to isolate that failure or continue execution
using replicas. Isolation occurs if the faulty process will
cause undesirable changes in the system whereas
recovery is initiated if the degree of fault that occurred
is less. Diagnostic support is also provided in addition
for the recovery of a process. The root cause of failure is
analyzed in detail to protect other connected processes
and to recover the failed process.

IV. IMPLEMENTATION ISSUES

In this section we present the implementation issues
of RMDS. The partition is done before the encryption
of a file to transform the large file into smaller
partitioned segments. Recovery method is applied to
enhance the fault tolerance. The fault tolerant
execution is done by analyzing the Process
Connectivity Graph which is generated by examining
dependencies between the processes based on the log
files in delta based cloud services. After executing
recovery mechanisms the file is stored in cloud
storage. It provides flexible and efficient way of
storing data with high security by employing
encryption and decryption methodology and
partitioning technique from RMDS. It also
emphasizes the secure approach of a file by dynamic
operation of storing and integrity checking for remote
data to guarantee that the file is transmitted in an
unharmed fashion .

12

International Journal of Advanced Information in Engineering Technology (IJAIET) ISSN: xxxx:
Vol.4, No.4, December 2014

Algorithm 1: Partitioning and merging files:

This algorithm partitions the larger file into
smaller portions and merges in order to ensure easy
and efficient processing of files. It finally merges the
partitioned portions of a file into original file and
integrity checking is done after merging to ensure
whether the file is properly processed.

1. Load the Input file and size.

2. Partitioning files: Count size <= s then split
file in to n blocks with extension and index
value.

Return files, otherwise declare as Invalid size.

3. Encrypt all partition files and store in cloud.

4. Merging files: check if(file!) then file is

missing.

Otherwise count the index value and merge
files.

Return file.

5. Decrypt the merge file for access.

The main aim of this algorithm is to provide

better secure access of a file using partitioning
method. It first gets the file from the disk and checks
the size of the file is within the count / threshold
value. If it is not, then the entire file is detached into
several segments and encrypted. After encryption, the
corresponding divisions of the file are merged and
transmitted through the untrusted medium of
communication. The file is then stored into delta
oriented cloud systems in which fault tolerance
execution is enabled. Finally, the file will be
decrypted whenever any request demanding the data
file appears.

Algorithm 2: Encryption:

Encryption algorithm focuses on encrypting the
segments which are divided by partitioning
algorithm. It uses RSA algorithm with random public
key generation techniques. This algorithm stores the
public and private key rings in the delta oriented
cloud. It first creates cipher and key generator
modules. The key generated consists of 2048 bits. It
uses private key and public key using symmetric and
asymmetric encryption techniques respectively. It
produces the partitioned and sealed Objects.

1. Create a Cipher object and Key Generator
object.

2. Create a Secret (session) key using cipher

object.

3. Initialize it with session key. And encrypt
the files.

4. Get recipient's public key and Create Cipher

and initialize it for encryption with
recipient's public key.

5. Create Sealed Object to seal session key

using asymmetric Cipher and Serialize
Sealed Object.

6. Return the encrypted files and serialized

Sealed Object to recipient.

Algorithm 3: Decryption:

The main focus of this algorithm is to unseal the
object and finally decrypt the segments of data and to
form the original file. It ensures file access control by
using asymmetric cryptosystem in which each
individual user will have separate private key to
access the data from the delta oriented cloud systems.
It re-serializes the encrypted sealed message object
and finally unseals the segments to decrypt using
private key which is stored in the delta enabled cloud.

After the partitioning is completed, recovery
methods are applied in the Delta enabled cloud
services in order to bestow high fault tolerant
processing in the cloud. It incorporates the concept of
ROC (Recovery Oriented Computing) along with
replicating techniques to provide effective fault
tolerance execution of a process. It examines the
transactions carried out in the cloud service and
finally uses the decision making module to find
whether to apply ROC techniques or isolation along
with redundancy scheme to furnish the best fault
tolerant system.

1. Get encrypted message and serialized Sealed
Object. Re-serialize Sealed Object.

3. Create Cipher object, and initialize it for

decryption and generate private key.

4. Unseal the key using the asymmetric Cipher.

5. Create Cipher object and Initialize it with the
recovered session key for decryption.

Algorithm 4: Process Connectivity:

1. Initialize a variable N as the total no of
processes.

2. Using Loops check and obtain all the

processes’ connectivity.

3. Outcomes written in the database.

This algorithm analyzes transaction logs of cloud
services to find the connectivity or dependency of a
process with another. After gathering all the values, it
saves the outcomes in the database as a graph of 2D
array. Since, it uses partition method; it ensures the
high level security of large data since it is stored by
partitioned method. The recovery oriented algorithm,

13

International Journal of Advanced Information in Engineering Technology (IJAIET) ISSN: xxxx:
Vol.4, No.4, December 2014

isolation and redundancy methods ensures the fault
tolerance execution of tasks in the delta enabled
cloud services. Hence, the performance and security
is maintained in the above approach effectively.

Algorithm 5: Find Faulty Process:

1. Find the Total number of processes.

2. Obtain the message values of processes from
systems using loops.

3. If message < 0 then Increment count1 and

store the message in array (P).

Else Increment count2 and store the message
in array (Q).

If count1 < count 2 then print array P

Else print array Q.

It checks the nature of the message from one
process to another. It also maintains the counter value
to increment if the matched type is found again. It
differentiates each and every message from one
process to another by upholding the identity values of
each process.

V. PERFORMANCE ANALYSIS

The performance of RMDS is shown in Fig [4]. It is
analyzed that the RMDS method is coupled with fault
tolerance techniques provides a better storage facility
which outperforms other existing systems. The
processing time and the recovery process are
improved in the proposed system.

RMDS reduces the average processing time taken for
execution and increases the system throughput by
proper utilization of the system using proctor module.
Proctor module examines the entire system scenario
and takes decision in an intelligent manner providing
highly fault tolerant system.

REFERENCES

[1] Panagiotis Panagi and Marios M. Polycarpou ,"A

Coordinated Communication Scheme for Distributed Fault
Tolerant Control", 2013 ,IEEE Transactions on industrial
informatics , pp 386-394.

[2] Wei-Cheng Lien, Kuen-Jong Lee, Tong-Yu Hsieh,

Krishnendu Chakrabarty, and Yu-Hua Wu , "Counter-Based
Output Selection for Test Response Compaction ",2013 ,
IEEE Transactions on computer-aided design of integrated
circuits and systems , pp 152-164.

[3] Cong Wang, Qian Wang, Kui Ren, Ning Cao, and Wenjing

Lou ,"Toward Secure and Dependable Storage Services in
Cloud Computing" 2012 , IEEE Transaction on services
computing , pp 220-232.

[4] XIANG YU, JIN JIANG, "Fault-Tolerant Flight Control

System Design Against Control Surface Impairments",2012 ,
IEEE Transactions on aerospace and electronic systems , pp
1031-1050.

[5] Yang Tang, Patrick P.C. Lee, John C.S. Lui, and Radia

Perlman,"Secure Overlay Cloud Storage with Access Control
and Assured Deletion", 2012 ,IEEE Transactions on
dependable and secure computing , pp 903-916.

[6] Yang Xiao and Susan D , "Using Rules and Data

Dependencies for the Recovery of Concurrent Processes in a
Service-Oriented Environment", 2012 ,IEEE Transactions on
services computing , pp 59-71.

[7] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin

Li,"Enabling Public Auditability and Data Dynamics for
Storage Security in Cloud Computing", 2011 IEEE
Transaction s on parallel and distributed systems, pp 847-
859.

Fig.4. Performance analysis of RMDS

VI. CONCLUSION

The data partitioning method along with diagnostic
support and isolation techniques helps in better
storage and fault tolerant process execution in the
delta oriented cloud systems. Effective system
utilization of resources is obtained by Recovery
oriented computing and it also incorporates
partitioning method inorder to provide high integrity
and secured data transfer from client to server.

14

